일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
31 |
- 이진탐색
- Dijkstra
- Brute Force
- Two Points
- union find
- DP
- 다익스트라
- two pointer
- String
- MYSQL
- Trie
- Hash
- 그래프
- SQL
- binary search
- 스토어드 프로시저
- Stored Procedure
- Today
- Total
목록전체 글 (425)
codingfarm

지수 분포(Exponential Distributions) 이산형 확률변수의 포아송분포와 관련된 연속형 분포에 대해 알아보겠다. 주어진 구간에서 발생건수는 포아송분포를 갖는 이산형 확률변수이다. 여기서 연속되는 발생 사이의 대기시간은 연속형의 확률변수이다. 확률변수 $X$가 지수분포(exponential distribution)을 가질경우 확률변수 $X$는 사건이 처음 발생하는 시간,공간이 되며, $\theta$는 다음 사건이 발생하는 시간적, 공간적 평균길이 일때 $X$의 $pdf$는 모수 $\theta > 0$에 대해 $$f(x)=\dfrac{1}{\theta}e^{-x/\theta},\;\;\;\;0\leq x < \infty$$ 지수분포의 평균과 분산은 $$\begin{align*} \mu&=\t..

연속형 확률분포(Continuous Distribution)-연속형 확률변수(Continuous Random Variables of The Continuous Type ) 구간 혹은 구간들의 합인 공간 $S$를 가지는 연속형 확률변수 $X$의 $pdf$는 다음의 조건을 만족하는 적분 가능한함수 $f(x)$이다. (a) $f(x)>0,\;\;\;\;x \in S$ (b) $\int_S f(x) dx=1$ (c) $(a,b) \subseteq S$ 이라면 사상$\{a

앞절에서는 이산시간 LTI 시스템의 컨볼루션 합에 대해 다루었다. 이번절에서는 연속시간 LTI 시스템의 컨볼루션 적분에 대해 알아보겠다. 2-1. 임펄스를 이용한 연속시간 신호의 표현 (The Representation of Continuous-Time Signals In Terms of Impulses) 연속시간 임펄트 함수의 일차결합을 통해 임의의 함수를 표현할 수 있다. $$x(t)=\int_{-\infty}^{+\infty}x(\tau)\delta(t-\tau)d\tau$$ 위 식을 연속시간 임펄스의 선별특성(sifting property) 이라 한다. 이산시간 단위 임펄스의 이동특성(sifting property)을 아래와같이 수식으로 표현 가능함을 알고 있다. $$x[n]=\sum_{k=-\i..

1-1. 임펄스 항을 이용한 이산시간 신호의 표현 (The Representation of Discrete-Time Signals in Terms of Impulses) 단위 임펄스 함수를 이용하면 임의의 이산시간 신호를 각 임펄스들의 순차열로 표현 가능하다. $$x[n]=\sum_{k=-\infty}^{\infty}x[k]\delta[n-k]$$ 이 식은 이산시간 단위 임펄스의 이동 특성(shifting property)이라 불린다. 이는 가중치를 $x[k]$로 둔 이동된 단위 임펄스 $\delta[n-k]$의 선형조합이다. 임의의 신호 $x[n]$은 시간이동된 임펄스들의 중첩을 통해서 얻은 신호이기에 선형성과 시불변성을 만족해야한다.(확인바람) 예) 단위 계단 $$u[n]=\sum_{k=-\infty..