| 일 | 월 | 화 | 수 | 목 | 금 | 토 | 
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | |||
| 5 | 6 | 7 | 8 | 9 | 10 | 11 | 
| 12 | 13 | 14 | 15 | 16 | 17 | 18 | 
| 19 | 20 | 21 | 22 | 23 | 24 | 25 | 
| 26 | 27 | 28 | 29 | 30 | 31 | 
													Tags
													
											
												
												- Stored Procedure
- two pointer
- 이진탐색
- Dijkstra
- Hash
- Two Points
- binary search
- 다익스트라
- SQL
- 그래프
- String
- Trie
- MYSQL
- Brute Force
- 스토어드 프로시저
- union find
- DP
													Archives
													
											
												
												- Today
- Total
codingfarm
24. 색이 변하는 구 본문
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 | // color.hlsl //*************************************************************************************** // color.hlsl by Frank Luna (C) 2015 All Rights Reserved. // // Transforms and colors geometry. //*************************************************************************************** cbuffer cbPosition : register(b0) {     float4x4 gWorldViewProj; } cbuffer cbLighting : register(b1) {     float3 gWorldLighting; } struct VertexIn {     float3 PosL  : POSITION;     float4 Color : COLOR; }; struct VertexOut {     float4 PosH  : SV_POSITION;     float4 Color : COLOR; }; VertexOut VS(VertexIn vin) {         VertexOut vout;     // Transform to homogeneous clip space.     vout.PosH = mul(float4(vin.PosL, 1.0f), gWorldViewProj);     // Just pass vertex color into the pixel shader.     vout.Color = vin.Color;     return vout; } float4 PS(VertexOut pin) : SV_Target{     float4 ret;     ret.x = gWorldLighting.x;     ret.y = gWorldLighting.y;     ret.z = gWorldLighting.z;     ret.w = 1.0f;     return ret; } // main.cpp #include <windows.h> #include "d3dx12.h" #include <DirectXMath.h> #include <DirectXColors.h> #include <vector> #include <array> #include <wrl.h> #include <dxgi.h> #include <dxgi1_4.h> #include <memory> #include <d3dcompiler.h> #include <vector> #include <utility> #include <cmath> #define SWAP_CHAIN_BUFFER_COUNT 2 #define WIDTH 800 #define HEIGHT 800 #define IDC_CLIENT            109 #pragma comment(lib, "d3d12") #pragma comment(lib, "dxgi") #pragma comment(lib, "dxguid") #pragma comment(lib, "d3dcompiler") struct Vertex { public:     DirectX::XMFLOAT3 Pos;     DirectX::XMFLOAT3 Normal;     Vertex() {}     Vertex(float px, float py, float pz, float nx, float ny, float nz) : Pos(px, py, pz), Normal(nx, ny, nz) {} }; DirectX::XMFLOAT2 mousePos; HWND hWnd; HACCEL hAccelTable; MSG msg; WNDCLASS WndClass; LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); HINSTANCE g_hInst; LPCTSTR lpszClass = TEXT("First"); Microsoft::WRL::ComPtr<IDXGIFactory> mdxgiFactory; Microsoft::WRL::ComPtr<ID3D12Device> md3dDevice; Microsoft::WRL::ComPtr<ID3D12Fence>  mFence; UINT mRtvDescriptorSize = 0; UINT mCbvSrvUavDescriptorSize; Microsoft::WRL::ComPtr<ID3D12CommandQueue>          mCommandQueue; Microsoft::WRL::ComPtr<ID3D12CommandAllocator>      mDirectCmdListAlloc; Microsoft::WRL::ComPtr<ID3D12GraphicsCommandList>   mCommandList; Microsoft::WRL::ComPtr<IDXGISwapChain> mSwapChain; DXGI_FORMAT mBackBufferFormat = DXGI_FORMAT_R8G8B8A8_UNORM; DXGI_FORMAT mDepthStencilFormat = DXGI_FORMAT_D24_UNORM_S8_UINT; const int SwapChainBufferCount = 2; Microsoft::WRL::ComPtr<ID3D12DescriptorHeap> mRtvHeap; Microsoft::WRL::ComPtr<ID3D12DescriptorHeap> mDsvHeap; Microsoft::WRL::ComPtr<ID3D12DescriptorHeap> mCbvHeap; UINT64 mCurrentFence = 0; Microsoft::WRL::ComPtr<ID3D12Resource> mSwapChainBuffer[SwapChainBufferCount]; Microsoft::WRL::ComPtr<ID3D12Resource> mDepthStencilBuffer; int mCurrBackBuffer = 0; D3D12_VIEWPORT mScreenViewport; D3D12_RECT mScissorRect; Microsoft::WRL::ComPtr<ID3D12RootSignature> mRootSignature = nullptr; Microsoft::WRL::ComPtr<ID3DBlob> mvsByteCode = nullptr; Microsoft::WRL::ComPtr<ID3DBlob> mpsByteCode = nullptr; UINT vbByteSize, ibByteSize; std::vector<D3D12_INPUT_ELEMENT_DESC> mInputLayout; Microsoft::WRL::ComPtr<ID3DBlob> VertexBufferCPU = nullptr; Microsoft::WRL::ComPtr<ID3DBlob> IndexBufferCPU = nullptr; Microsoft::WRL::ComPtr<ID3D12Resource> VertexBufferGPU = nullptr; Microsoft::WRL::ComPtr<ID3D12Resource> IndexBufferGPU = nullptr; Microsoft::WRL::ComPtr<ID3D12Resource> mCameraViewCB = nullptr; UINT cameraViewCBByteSize = (sizeof(DirectX::XMFLOAT4X4) + 255) & ~255; Microsoft::WRL::ComPtr<ID3D12Resource> mLightingCB = nullptr; UINT lightingCBByteSize = (sizeof(DirectX::XMFLOAT4X4) + 255) & ~255; float timeValue = 0; Microsoft::WRL::ComPtr<ID3D12PipelineState> mPSO = nullptr; int width, height; float mPhi = DirectX::XM_PI / 3.0; float mTheta = DirectX::XM_PI / 4.0; float mRadius = 7; void FlushCommandQueue() {     // Advance the fence value to mark commands up to this fence point.     mCurrentFence++;     // Add an instruction to the command queue to set a new fence point.  Because we      // are on the GPU timeline, the new fence point won't be set until the GPU finishes     // processing all the commands prior to this Signal().     mCommandQueue->Signal(mFence.Get(), mCurrentFence);     // Wait until the GPU has completed commands up to this fence point.     if (mFence->GetCompletedValue() < mCurrentFence)     {         HANDLE eventHandle = CreateEventEx(nullptr, false, false, EVENT_ALL_ACCESS);         // Fire event when GPU hits current fence.           mFence->SetEventOnCompletion(mCurrentFence, eventHandle);         // Wait until the GPU hits current fence event is fired.         WaitForSingleObject(eventHandle, INFINITE);         CloseHandle(eventHandle);     } } void CreateSphere(float radius, UINT sliceCount, UINT stackCount, std::vector<Vertex> &vertices, std::vector<std::uint16_t> &indices) {     //     // Compute the vertices stating at the top pole and moving down the stacks.     //     // Poles: note that there will be texture coordinate distortion as there is     // not a unique point on the texture map to assign to the pole when mapping     // a rectangular texture onto a sphere.     Vertex topVertex(0.0f, +radius, 0.0f, 0.0f, +1.0f, 0.0f);     Vertex bottomVertex(0.0f, -radius, 0.0f, 0.0f, -1.0f, 0.0f);     vertices.push_back(topVertex);     float phiStep = DirectX::XM_PI / stackCount;     float thetaStep = 2.0f * DirectX::XM_PI / sliceCount;     // Compute vertices for each stack ring (do not count the poles as rings).     for (UINT i = 1; i <= stackCount - 1; ++i)     {         float phi = i * phiStep;         // Vertices of ring.         for (UINT j = 0; j <= sliceCount; ++j)         {             float theta = j * thetaStep;             Vertex v;             // spherical to cartesian             v.Pos.x = radius * sinf(phi) * cosf(theta);             v.Pos.y = radius * cosf(phi);             v.Pos.z = radius * sinf(phi) * sinf(theta);             DirectX::XMVECTOR p = DirectX::XMLoadFloat3(&v.Pos);             XMStoreFloat3(&v.Normal, DirectX::XMVector3Normalize(p));             vertices.push_back(v);         }     }     vertices.push_back(bottomVertex);     //     // Compute indices for top stack.  The top stack was written first to the vertex buffer     // and connects the top pole to the first ring.     //     for (UINT i = 1; i <= sliceCount; ++i)     {         indices.push_back(0);         indices.push_back(i + 1);         indices.push_back(i);     }     //     // Compute indices for inner stacks (not connected to poles).     //     // Offset the indices to the index of the first vertex in the first ring.     // This is just skipping the top pole vertex.     UINT baseIndex = 1;     UINT ringVertexCount = sliceCount + 1;     for (UINT i = 0; i < stackCount - 2; ++i)     {         for (UINT j = 0; j < sliceCount; ++j)         {             indices.push_back(baseIndex + i * ringVertexCount + j);             indices.push_back(baseIndex + i * ringVertexCount + j + 1);             indices.push_back(baseIndex + (i + 1) * ringVertexCount + j);             indices.push_back(baseIndex + (i + 1) * ringVertexCount + j);             indices.push_back(baseIndex + i * ringVertexCount + j + 1);             indices.push_back(baseIndex + (i + 1) * ringVertexCount + j + 1);         }     }     //     // Compute indices for bottom stack.  The bottom stack was written last to the vertex buffer     // and connects the bottom pole to the bottom ring.     //     // South pole vertex was added last.     UINT southPoleIndex = vertices.size() - 1;     // Offset the indices to the index of the first vertex in the last ring.     baseIndex = southPoleIndex - ringVertexCount;     for (UINT i = 0; i < sliceCount; ++i)     {         indices.push_back(southPoleIndex);         indices.push_back(baseIndex + i);         indices.push_back(baseIndex + i + 1);     } } void Init() {     // 1. Init direct3D     CreateDXGIFactory1(IID_PPV_ARGS(&mdxgiFactory));     D3D12CreateDevice(nullptr,             // default adapter         D3D_FEATURE_LEVEL_11_0,         IID_PPV_ARGS(&md3dDevice));     md3dDevice->CreateFence(0, D3D12_FENCE_FLAG_NONE,         IID_PPV_ARGS(&mFence));     // 1-1. Create Command Objects     D3D12_COMMAND_QUEUE_DESC queueDesc = {};     queueDesc.Type = D3D12_COMMAND_LIST_TYPE_DIRECT;     queueDesc.Flags = D3D12_COMMAND_QUEUE_FLAG_NONE;     md3dDevice->CreateCommandQueue(&queueDesc, IID_PPV_ARGS(&mCommandQueue));     md3dDevice->CreateCommandAllocator(         D3D12_COMMAND_LIST_TYPE_DIRECT,         IID_PPV_ARGS(mDirectCmdListAlloc.GetAddressOf()));     md3dDevice->CreateCommandList(         0,         D3D12_COMMAND_LIST_TYPE_DIRECT,         mDirectCmdListAlloc.Get(), // Associated command allocator         nullptr,                   // Initial PipelineStateObject         IID_PPV_ARGS(mCommandList.GetAddressOf()));         // 1-2. Create Swap Chain     // Release the previous swapchain we will be recreating.     DXGI_SWAP_CHAIN_DESC sd;     sd.BufferDesc.Width = width;     sd.BufferDesc.Height = height;     sd.BufferDesc.RefreshRate.Numerator = 60;     sd.BufferDesc.RefreshRate.Denominator = 1;     sd.BufferDesc.Format = mBackBufferFormat;     sd.BufferDesc.ScanlineOrdering = DXGI_MODE_SCANLINE_ORDER_UNSPECIFIED;     sd.BufferDesc.Scaling = DXGI_MODE_SCALING_UNSPECIFIED;     sd.SampleDesc.Count = 1;     sd.SampleDesc.Quality = 0;     sd.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;     sd.BufferCount = SwapChainBufferCount;     sd.OutputWindow = hWnd;     sd.Windowed = true;     sd.SwapEffect = DXGI_SWAP_EFFECT_FLIP_DISCARD;     sd.Flags = DXGI_SWAP_CHAIN_FLAG_ALLOW_MODE_SWITCH;     // Note: Swap chain uses queue to perform flush.     mdxgiFactory->CreateSwapChain(         mCommandQueue.Get(),         &sd,         mSwapChain.GetAddressOf());     mCurrBackBuffer = 0;     // 1-3. Create Rtv And Dsv DescriptorHeaps     D3D12_DESCRIPTOR_HEAP_DESC rtvHeapDesc;     rtvHeapDesc.NumDescriptors = SwapChainBufferCount;     rtvHeapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_RTV;     rtvHeapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_NONE;     rtvHeapDesc.NodeMask = 0;     md3dDevice->CreateDescriptorHeap(         &rtvHeapDesc, IID_PPV_ARGS(mRtvHeap.GetAddressOf()));     D3D12_DESCRIPTOR_HEAP_DESC dsvHeapDesc;     dsvHeapDesc.NumDescriptors = 1;     dsvHeapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_DSV;     dsvHeapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_NONE;     dsvHeapDesc.NodeMask = 0;     md3dDevice->CreateDescriptorHeap(         &dsvHeapDesc, IID_PPV_ARGS(mDsvHeap.GetAddressOf()));     // Flush before changing any resources.     // Resize the swap chain.     mRtvDescriptorSize = md3dDevice->GetDescriptorHandleIncrementSize(D3D12_DESCRIPTOR_HEAP_TYPE_RTV);     //CD3DX12_CPU_DESCRIPTOR_HANDLE rtvHeapHandle(mRtvHeap->GetCPUDescriptorHandleForHeapStart());     D3D12_CPU_DESCRIPTOR_HANDLE rtvHeapHandle;     rtvHeapHandle.ptr = mRtvHeap->GetCPUDescriptorHandleForHeapStart().ptr;     for (UINT i = 0; i < SwapChainBufferCount; i++) {         mSwapChain->GetBuffer(i, IID_PPV_ARGS(&mSwapChainBuffer[i]));         md3dDevice->CreateRenderTargetView(mSwapChainBuffer[i].Get(), nullptr, rtvHeapHandle);         rtvHeapHandle.ptr += mRtvDescriptorSize;     }     // Create the depth/stencil buffer and view.     D3D12_RESOURCE_DESC depthStencilDesc;     depthStencilDesc.Dimension = D3D12_RESOURCE_DIMENSION_TEXTURE2D;     depthStencilDesc.Alignment = 0;     depthStencilDesc.Width = WIDTH;     depthStencilDesc.Height = HEIGHT;     depthStencilDesc.DepthOrArraySize = 1;     depthStencilDesc.MipLevels = 1;     // Correction 11/12/2016: SSAO chapter requires an SRV to the depth buffer to read from      // the depth buffer.  Therefore, because we need to create two views to the same resource:     //   1. SRV format: DXGI_FORMAT_R24_UNORM_X8_TYPELESS     //   2. DSV Format: DXGI_FORMAT_D24_UNORM_S8_UINT     // we need to create the depth buffer resource with a typeless format.       depthStencilDesc.Format = DXGI_FORMAT_R24G8_TYPELESS;     depthStencilDesc.SampleDesc.Count = 1;     depthStencilDesc.SampleDesc.Quality = 0;     depthStencilDesc.Layout = D3D12_TEXTURE_LAYOUT_UNKNOWN;     depthStencilDesc.Flags = D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL;     D3D12_CLEAR_VALUE optClear;     optClear.Format = mDepthStencilFormat;     optClear.DepthStencil.Depth = 1.0f;     optClear.DepthStencil.Stencil = 0;     md3dDevice->CreateCommittedResource(         &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),         D3D12_HEAP_FLAG_NONE,         &depthStencilDesc,         D3D12_RESOURCE_STATE_COMMON,         &optClear,         IID_PPV_ARGS(mDepthStencilBuffer.GetAddressOf()));     // Create descriptor to mip level 0 of entire resource using the format of the resource.     D3D12_DEPTH_STENCIL_VIEW_DESC dsvDesc;     dsvDesc.Flags = D3D12_DSV_FLAG_NONE;     dsvDesc.ViewDimension = D3D12_DSV_DIMENSION_TEXTURE2D;     dsvDesc.Format = mDepthStencilFormat;     dsvDesc.Texture2D.MipSlice = 0;     md3dDevice->CreateDepthStencilView(mDepthStencilBuffer.Get(), &dsvDesc, mDsvHeap->GetCPUDescriptorHandleForHeapStart());     // Transition the resource from its initial state to be used as a depth buffer.     mCommandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(mDepthStencilBuffer.Get(),         D3D12_RESOURCE_STATE_COMMON, D3D12_RESOURCE_STATE_DEPTH_WRITE));     // Start off in a closed state.  This is because the first time we refer      // to the command list we will Reset it, and it needs to be closed before     // calling Reset.     mCommandList->Close();     // Execute the resize commands.     ID3D12CommandList* cmdsLists[] = { mCommandList.Get() };     mCommandQueue->ExecuteCommandLists(_countof(cmdsLists), cmdsLists);     // Wait until resize is complete.     FlushCommandQueue();     // Update the viewport transform to cover the client area.     mScreenViewport.TopLeftX = 0;     mScreenViewport.TopLeftY = 0;     mScreenViewport.Width = static_cast<float>(WIDTH);     mScreenViewport.Height = static_cast<float>(HEIGHT);     mScreenViewport.MinDepth = 0.0f;     mScreenViewport.MaxDepth = 1.0f;     mScissorRect = { 0, 0, WIDTH, HEIGHT };     // 6. Build Box Geometry     std::vector<Vertex> vertices;     std::vector<std::uint16_t> indices;     CreateSphere(0.5f, 60, 60, vertices, indices);     vbByteSize = (UINT)vertices.size() * sizeof(Vertex);     ibByteSize = (UINT)indices.size() * sizeof(std::uint16_t);     md3dDevice->CreateCommittedResource(         &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),         D3D12_HEAP_FLAG_NONE,         &CD3DX12_RESOURCE_DESC::Buffer(vbByteSize),         D3D12_RESOURCE_STATE_GENERIC_READ,         nullptr,         IID_PPV_ARGS(VertexBufferGPU.GetAddressOf()));     // 생성된 리소스에 vertices의 정보를 넣어야 한다.     // Copy the triangle data to the vertex buffer.     void* vertexDataBuffer = nullptr;     CD3DX12_RANGE vertexReadRange(0, 0); // We do not intend to read from this resource on the CPU.     VertexBufferGPU->Map(0, &vertexReadRange, &vertexDataBuffer);     ::memcpy(vertexDataBuffer, &vertices[0], vbByteSize);     VertexBufferGPU->Unmap(0, nullptr);     md3dDevice->CreateCommittedResource(         &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),         D3D12_HEAP_FLAG_NONE,         &CD3DX12_RESOURCE_DESC::Buffer(ibByteSize),         D3D12_RESOURCE_STATE_GENERIC_READ,         nullptr,         IID_PPV_ARGS(IndexBufferGPU.GetAddressOf()));     // 생성된 리소스에 indexes의 정보를 넣어야 한다.     // Copy the triangle data to the index buffer.     void* indexDataBuffer = nullptr;     CD3DX12_RANGE indexReadRange(0, 0); // We do not intend to read from this resource on the CPU.     IndexBufferGPU->Map(0, &indexReadRange, &indexDataBuffer);     ::memcpy(indexDataBuffer, &indices[0], ibByteSize);     IndexBufferGPU->Unmap(0, nullptr);     // 3. Build Constant Buffers     md3dDevice->CreateCommittedResource(         &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),         D3D12_HEAP_FLAG_NONE,         &CD3DX12_RESOURCE_DESC::Buffer(sizeof(DirectX::XMFLOAT4X4)),         D3D12_RESOURCE_STATE_GENERIC_READ,         nullptr,         IID_PPV_ARGS(&mCameraViewCB));            md3dDevice->CreateCommittedResource(         &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),         D3D12_HEAP_FLAG_NONE,         &CD3DX12_RESOURCE_DESC::Buffer(sizeof(DirectX::XMFLOAT3)),         D3D12_RESOURCE_STATE_GENERIC_READ,         nullptr,         IID_PPV_ARGS(&mLightingCB));     /*/     BYTE* ConstantDataBuffer = nullptr;     CD3DX12_RANGE ConstantReadRange(0, 0); // We do not intend to read from this resource on the CPU.     mObjectCB->Map(0, nullptr, reinterpret_cast<void**>(&ConstantDataBuffer));     DirectX::XMFLOAT4X4 tmp             (0.2f, 0.4f, 0.6f, 0.8f,             0.2f, 0.4f, 0.6f, 0.8f,             0.2f, 0.4f, 0.6f, 0.8f,             0.2f, 0.4f, 0.6f, 0.8f);     ::memcpy(&ConstantDataBuffer[objCBByteSize], &tmp, sizeof(DirectX::XMFLOAT4X4));     mObjectCB->Unmap(0, nullptr);     */     D3D12_DESCRIPTOR_HEAP_DESC cbvHeapDesc;     cbvHeapDesc.NumDescriptors = 2;     cbvHeapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV;     cbvHeapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE;     cbvHeapDesc.NodeMask = 0;     md3dDevice->CreateDescriptorHeap(&cbvHeapDesc,         IID_PPV_ARGS(&mCbvHeap));     D3D12_GPU_VIRTUAL_ADDRESS cbAddress;     // Offset to the ith object constant buffer in the buffer.     D3D12_CONSTANT_BUFFER_VIEW_DESC cbvDesc;     D3D12_CPU_DESCRIPTOR_HANDLE mCbvHeapHandle = mCbvHeap->GetCPUDescriptorHandleForHeapStart();     mCbvSrvUavDescriptorSize = md3dDevice->GetDescriptorHandleIncrementSize(D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV);     cbAddress = mCameraViewCB->GetGPUVirtualAddress();     cbvDesc.BufferLocation = cbAddress;     cbvDesc.SizeInBytes = cameraViewCBByteSize;     md3dDevice->CreateConstantBufferView(         &cbvDesc,         mCbvHeapHandle);     mCbvHeapHandle.ptr += mCbvSrvUavDescriptorSize;     cbAddress = mLightingCB->GetGPUVirtualAddress();     cbvDesc.BufferLocation = cbAddress;     cbvDesc.SizeInBytes = lightingCBByteSize;     md3dDevice->CreateConstantBufferView(         &cbvDesc,         mCbvHeapHandle);     // 4. Build Root Signature     // Shader programs typically require resources as input (constant buffers,     // textures, samplers).  The root signature defines the resources the shader     // programs expect.  If we think of the shader programs as a function, and     // the input resources as function parameters, then the root signature can be     // thought of as defining the function signature.       // Root parameter can be a table, root descriptor or root constants.     D3D12_ROOT_PARAMETER slotRootParameter[1];     D3D12_DESCRIPTOR_RANGE descRange[1];     descRange[0].RangeType = D3D12_DESCRIPTOR_RANGE_TYPE_CBV;     descRange[0].NumDescriptors = 2;     descRange[0].BaseShaderRegister = 0;     descRange[0].RegisterSpace = 0;     descRange[0].OffsetInDescriptorsFromTableStart = D3D12_DESCRIPTOR_RANGE_OFFSET_APPEND;     slotRootParameter[0].ParameterType = D3D12_ROOT_PARAMETER_TYPE_DESCRIPTOR_TABLE;     slotRootParameter[0].ShaderVisibility = D3D12_SHADER_VISIBILITY_ALL;     slotRootParameter[0].DescriptorTable.NumDescriptorRanges = 1;     slotRootParameter[0].DescriptorTable.pDescriptorRanges = descRange;     D3D12_ROOT_SIGNATURE_DESC rootSigDesc;     rootSigDesc.NumParameters = 1;     rootSigDesc.pParameters = slotRootParameter;     rootSigDesc.NumStaticSamplers = 0;     rootSigDesc.pStaticSamplers = nullptr;     rootSigDesc.Flags = D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT;     // create a root signature with a single slot which points to a descriptor range consisting of a single constant buffer     Microsoft::WRL::ComPtr<ID3DBlob> serializedRootSig = nullptr;     Microsoft::WRL::ComPtr<ID3DBlob> errorBlob = nullptr;     D3D12SerializeRootSignature(&rootSigDesc, D3D_ROOT_SIGNATURE_VERSION_1,         serializedRootSig.GetAddressOf(), errorBlob.GetAddressOf());     if (errorBlob != nullptr)     {         ::OutputDebugStringA((char*)errorBlob->GetBufferPointer());     }     md3dDevice->CreateRootSignature(         0,         serializedRootSig->GetBufferPointer(),         serializedRootSig->GetBufferSize(),         IID_PPV_ARGS(&mRootSignature));     // 5. Build Shaders And Input Layout     UINT compileFlags = 0; #if defined(DEBUG) || defined(_DEBUG)       compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION; #endif     Microsoft::WRL::ComPtr<ID3DBlob> errors;     HRESULT hr1 = D3DCompileFromFile(L"Shaders\\color.hlsl", nullptr, D3D_COMPILE_STANDARD_FILE_INCLUDE,         "VS", "vs_5_0", compileFlags, 0, &mvsByteCode, &errors);     if (errors != nullptr)         OutputDebugStringA((char*)errors->GetBufferPointer());     HRESULT hr2 = D3DCompileFromFile(L"Shaders\\color.hlsl", nullptr, D3D_COMPILE_STANDARD_FILE_INCLUDE,         "PS", "ps_5_0", compileFlags, 0, &mpsByteCode, &errors);     if (errors != nullptr)         OutputDebugStringA((char*)errors->GetBufferPointer());     mInputLayout =     {         { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },         { "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }     };     // 7. Build PSO     D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc;     ZeroMemory(&psoDesc, sizeof(D3D12_GRAPHICS_PIPELINE_STATE_DESC));     psoDesc.InputLayout = { mInputLayout.data(), (UINT)mInputLayout.size() };     psoDesc.pRootSignature = mRootSignature.Get();     psoDesc.VS =     {         reinterpret_cast<BYTE*>(mvsByteCode->GetBufferPointer()),         mvsByteCode->GetBufferSize()     };     psoDesc.PS =     {         reinterpret_cast<BYTE*>(mpsByteCode->GetBufferPointer()),         mpsByteCode->GetBufferSize()     };     psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);     psoDesc.RasterizerState.FillMode = D3D12_FILL_MODE_WIREFRAME;     psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);     psoDesc.DepthStencilState = CD3DX12_DEPTH_STENCIL_DESC(D3D12_DEFAULT);     psoDesc.SampleMask = UINT_MAX;     psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;     psoDesc.NumRenderTargets = 1;     psoDesc.RTVFormats[0] = mBackBufferFormat;     psoDesc.SampleDesc.Count = 1;     psoDesc.SampleDesc.Quality = 0;     psoDesc.DSVFormat = mDepthStencilFormat;     md3dDevice->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&mPSO));     //===============================     // Execute the initialization commands.     mCommandList->Close();     ID3D12CommandList* cmdsLists_[] = { mCommandList.Get() };     mCommandQueue->ExecuteCommandLists(_countof(cmdsLists_), cmdsLists_);     // Wait until initialization is complete.     FlushCommandQueue(); } void Update() {     // Convert Spherical to Cartesian coordinates.     float x = mRadius * sinf(mPhi) * sinf(mTheta);     float z = mRadius * sinf(mPhi) * cosf(mTheta);     float y = mRadius * cosf(mPhi);     DirectX::XMVECTOR position = DirectX::XMVectorSet(x, y, z, 1.0f);     DirectX::XMVECTOR org = DirectX::XMVectorZero();     DirectX::XMVECTOR up = DirectX::XMVectorSet(0, 1.0, 0, 0.0);     DirectX::XMMATRIX world(         1, 0, 0, 0,         0, 1, 0, 0,         0, 0, 1, 0,         0, 0, 0, 1);     DirectX::XMMATRIX view = DirectX::XMMatrixLookAtLH(position, org, up);     DirectX::XMMATRIX proj = DirectX::XMMatrixPerspectiveFovLH(0.25f * DirectX::XM_PI, (float)WIDTH / (float)HEIGHT, 0.1f, 50);     DirectX::XMMATRIX worldviewProj = world * view * proj;     DirectX::XMFLOAT4X4 objectConstants;     DirectX::XMStoreFloat4x4(&objectConstants, DirectX::XMMatrixTranspose(worldviewProj));     BYTE* mappingDataBuffer = nullptr;     D3D12_RANGE dataReadRange;     dataReadRange.Begin = 0;     dataReadRange.End = 0;     mCameraViewCB->Map(0, nullptr, reinterpret_cast<void**>(&mappingDataBuffer));     ::memcpy(mappingDataBuffer, &objectConstants, sizeof(DirectX::XMFLOAT4X4));     mCameraViewCB->Unmap(0, nullptr);     BYTE* mappingDataBuffer_ = nullptr;     timeValue += 0.001f;     if (timeValue <= 0)  timeValue = 0;     DirectX::XMFLOAT3 color;     color.x = 0.5f * cosf(0.5f * timeValue) + 0.5f;     color.y = 0.5f * cosf(0.75f * timeValue) + 0.5f;     color.z = 0.5f * cosf(timeValue) + 0.5f;     mLightingCB->Map(0, nullptr, reinterpret_cast<void**>(&mappingDataBuffer_));     ::memcpy(mappingDataBuffer_, &color, sizeof(DirectX::XMFLOAT4X4));     mLightingCB->Unmap(0, nullptr);     // 1. Update     // 2. Draw     // Reuse the memory associated with command recording.     // We can only reset when the associated command lists have finished execution on the GPU.     mDirectCmdListAlloc->Reset();     // A command list can be reset after it has been added to the command queue via ExecuteCommandList.     // Reusing the command list reuses memory.     mCommandList->Reset(mDirectCmdListAlloc.Get(), mPSO.Get());     mCommandList->SetGraphicsRootSignature(mRootSignature.Get());     ID3D12DescriptorHeap* descriptorHeaps[] = { mCbvHeap.Get() };     mCommandList->SetDescriptorHeaps(_countof(descriptorHeaps), descriptorHeaps);     D3D12_GPU_DESCRIPTOR_HANDLE mCbvHeapHandle = mCbvHeap->GetGPUDescriptorHandleForHeapStart();     mCommandList->SetGraphicsRootDescriptorTable(0, mCbvHeapHandle);     mCbvHeapHandle.ptr += mCbvSrvUavDescriptorSize;     mCommandList->RSSetViewports(1, &mScreenViewport);     mCommandList->RSSetScissorRects(1, &mScissorRect);     // Indicate a state transition on the resource usage.     mCommandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(mSwapChainBuffer[mCurrBackBuffer].Get(),         D3D12_RESOURCE_STATE_PRESENT, D3D12_RESOURCE_STATE_RENDER_TARGET));     // Clear the back buffer and depth buffer.     CD3DX12_CPU_DESCRIPTOR_HANDLE cBackBufferViewHandle(         mRtvHeap->GetCPUDescriptorHandleForHeapStart(),         mCurrBackBuffer,         mRtvDescriptorSize);     mCommandList->ClearRenderTargetView(cBackBufferViewHandle, DirectX::Colors::LightSteelBlue, 0, nullptr);     D3D12_CPU_DESCRIPTOR_HANDLE dsvHandle = mDsvHeap->GetCPUDescriptorHandleForHeapStart();     mCommandList->ClearDepthStencilView(dsvHandle, D3D12_CLEAR_FLAG_DEPTH | D3D12_CLEAR_FLAG_STENCIL, 1.0f, 0, 0, nullptr);     // Specify the buffers we are going to render to.     mCommandList->OMSetRenderTargets(1, &cBackBufferViewHandle, true, &dsvHandle);     D3D12_VERTEX_BUFFER_VIEW vbv;     vbv.BufferLocation = VertexBufferGPU->GetGPUVirtualAddress();     vbv.StrideInBytes = sizeof(Vertex);     vbv.SizeInBytes = vbByteSize;     mCommandList->IASetVertexBuffers(0, 1, &vbv);     D3D12_INDEX_BUFFER_VIEW ibv;     ibv.BufferLocation = IndexBufferGPU->GetGPUVirtualAddress();     ibv.Format = DXGI_FORMAT_R16_UINT;     ibv.SizeInBytes = ibByteSize;     mCommandList->IASetIndexBuffer(&ibv);     mCommandList->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);     mCommandList->DrawIndexedInstanced(ibByteSize / sizeof(std::uint16_t), 1, 0, 0, 0);     // Indicate a state transition on the resource usage.     mCommandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(mSwapChainBuffer[mCurrBackBuffer].Get(),         D3D12_RESOURCE_STATE_RENDER_TARGET, D3D12_RESOURCE_STATE_PRESENT));     // Done recording commands.     mCommandList->Close();     // Add the command list to the queue for execution.     ID3D12CommandList* cmdsLists[] = { mCommandList.Get() };     mCommandQueue->ExecuteCommandLists(_countof(cmdsLists), cmdsLists);     // swap the back and front buffers     mSwapChain->Present(0, 0);     mCurrBackBuffer = (mCurrBackBuffer + 1) % SwapChainBufferCount;     // Wait until frame commands are complete.  This waiting is inefficient and is     // done for simplicity.  Later we will show how to organize our rendering code     // so we do not have to wait per frame.     FlushCommandQueue(); } int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance     , LPSTR lpszCmdParam, int nCmdShow) {     g_hInst = hInstance;     WndClass.cbClsExtra = 0;     WndClass.cbWndExtra = 0;     WndClass.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);     WndClass.hCursor = LoadCursor(NULL, IDC_ARROW);     WndClass.hIcon = LoadIcon(NULL, IDI_APPLICATION);     WndClass.hInstance = hInstance;     WndClass.lpfnWndProc = (WNDPROC)WndProc;     WndClass.lpszClassName = lpszClass;     WndClass.lpszMenuName = NULL;     WndClass.style = CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS;     RegisterClass(&WndClass);     RECT rt = { 0,0,WIDTH,HEIGHT };     AdjustWindowRect(&rt, WS_OVERLAPPEDWINDOW, FALSE);     width = rt.right - rt.left;     height = rt.bottom - rt.top;     hWnd = CreateWindow(lpszClass, lpszClass, WS_OVERLAPPEDWINDOW,         CW_USEDEFAULT, CW_USEDEFAULT, width, height,         NULL, (HMENU)NULL, hInstance, NULL);     ShowWindow(hWnd, nCmdShow);     Init();     hAccelTable = LoadAccelerators(hInstance, MAKEINTRESOURCE(IDC_CLIENT));     while (true) {         if (PeekMessage(&msg, 0, 0, 0, PM_REMOVE)) {             if (msg.message == WM_QUIT)                 break;             if (!TranslateAccelerator(msg.hwnd, hAccelTable, &msg)) {                 TranslateMessage(&msg);                 DispatchMessage(&msg);             }         }         else             Update();     }     return msg.wParam; } int lastMousePosX, lastMousePosY; bool isLButtonDown, isRButtonDown; LRESULT CALLBACK WndProc(HWND hWnd, UINT iMessage, WPARAM wParam, LPARAM lParam) {     switch (iMessage) {     case WM_CREATE:         isLButtonDown = false;         isRButtonDown = false;         return 0;     case WM_LBUTTONDOWN:         isLButtonDown = true;         lastMousePosX = LOWORD(lParam);         lastMousePosY = HIWORD(lParam);         return 0;     case WM_RBUTTONDOWN:         isRButtonDown = true;         lastMousePosY = HIWORD(lParam);         return 0;     case WM_LBUTTONUP:         isLButtonDown = false;         return 0;     case WM_RBUTTONUP:         isRButtonDown = false;         return 0;     case WM_MOUSEMOVE: {         int y = HIWORD(lParam);         float dy = -DirectX::XMConvertToRadians(0.25f * static_cast<float>(y - lastMousePosY));         if (isLButtonDown == true) {             int x = LOWORD(lParam);             float dx = DirectX::XMConvertToRadians(0.25f * static_cast<float>(x - lastMousePosX));             mTheta += dx;             lastMousePosX = x;             mPhi += dy;             if (mPhi >= DirectX::XM_PI) mPhi = DirectX::XM_PI - 0.001f;             if (mPhi <= 0)              mPhi = 0.001f;             lastMousePosY = y;         }         if (isRButtonDown == true) {             mRadius += -2 * dy;             if (mRadius <= 3.f) mRadius = 3.f;             if (mRadius >= 10.0f) mRadius = 10.0f;             lastMousePosY = y;         }         return 0;     }     case WM_DESTROY:         PostQuitMessage(0);         return 0;     }     return(DefWindowProc(hWnd, iMessage, wParam, lParam)); } | cs | 
하나의 descriptor heap에 2개의 CBV를 섞은 후 descriptor table로 서명된 register에 binding 한다.
'computer graphics > DirectX12' 카테고리의 다른 글
| 27. 텍스처 적용(Texturing) (0) | 2021.09.19 | 
|---|---|
| 26. 좌표 변환 (0) | 2021.08.23 | 
| 23. Cube 그리기 (0) | 2021.08.10 | 
| 22. 삼각형 그리기 2 (0) | 2021.08.05 | 
| 20. 삼각형 그리기 (0) | 2021.07.27 | 
			  Comments
			
		
	
               
           
					
					
					
					
					
					
				 
								